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ABSTRACT 

In this paper, a new simple mathematical model of MacPherson strut suspension system is proposed. The 

proposed model overcomes the complexities introduced in the nonlinear models found in literature. In 

addition, a new ADRC approach is proposed to achieve as fast as possible and without overshoot transient 

process. This ADRC approach depends on replacing the ADRC control part with a composite non-linear 

feedback (CNF) controller. Simulating the control of the proposed mathematical model of MacPherson 

suspension, a comparison is carried out between the new proposed ADRC, the conventional ADRC, Sky-

hook and LQR controllers. Simulation results illustrate that CNF-ADRC has the best handling and comfort 

performance for active and semi-active MacPherson suspension system with a drawback of introducing 

new frequency components in the control signal of semi-active suspension. 

Key words: MacPherson strut, Skyhook, CNF-ADRC, LQR, Comfort, Handling, Mathematical model. 

 

1. INTRODUCTION 

                       [1] that the functions of a 

suspension system are to carry the static weight 

of the vehicle, to maximize the friction between 

the tires and the road surface, to provide 

steering stability with good handling (minimize 

body roll) and to ensure the comfort of the 

passenger (ability to smooth out a bump road). 

However, car suspension systems can be 

organized as independents and non-

independents. In non-independent 

configuration, both right and left wheels 

attached to the same solid axle. When one wheel 

hits a bump in the road, its upward movement 

causes a slight tilt of the other wheel. In 

independent configuration, each wheel on the 

same axle could move vertically independently 

of the other. 

Popular suspension systems are leaf-spring 

suspension and coil-spring suspension. In leaf-

spring configuration, the spring is connected 

directly to the real axle of the vehicle in order to 

damp vibrations. On the other hand, car coil 

springs, also called suspension springs, are 

made with wide gap coils that compress to 

absorb impact when tires roll over a rough 

terrain. In addition to improving ride quality by 

reducing bounce, coil springs and struts are also 

critical components that give the car its height 

and keep it off the ground. Coil spring is the 
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(a) MacPherson type suspension [11]  

(b) Frame-less chassis [21] 

Fig 1. Front wheel independent MacPherson strut suspension 

most common type of springs found in modern 

vehicles. It has the advantages of low cost and 

impact size over leaf-spring. Independent 

suspension used for front wheels is known as 

front-wheel independent suspension whereas 

the independent suspension used for rear 

wheels is known as rear-wheel independent 

suspension. Front-wheel independent 

suspension is mainly of five types: Double 

wishbone, MacPherson, Vertical guides, Training 

link and Swinging half axle and they are all coil-

sprin               [2]. Typical MacPherson 

type suspension can be shown as in Fig.1 (a). 

It consists of a single lower wishbone arm which 

is hinged to the chassis of the automobile. The 

other end of this wishbone arm is attached to 

the strut through a joint. The strut which 

contains the shock absorber and the spring is 

connected to the stub axle which carries the 

wheel. The upper end of this strut is fixed to the 

body structure through a flexible mounting 

(usually via a spherical link). Due to this a 

stronger body is required to absorb the full 

suspension load. Therefore frame-less chassis 

construction is preferred for this suspension 

(see Fig.2.  The steering motion of the wheel is 

provided through the lower control arm. 

MacPherson strut suspension is very easy and 

cheap in construction and requires very less 

maintenance. It is lighter and simpler than 

double wishbone suspension thus keeping the 

unsprung weight lower. It requires very less 

space and so is very useful in front wheel driven 

automobiles where more room is required in the 

engine compartment [3].  

However, different car alignment angles (mainly 

camber, caster and toe) are identified 

historically to describe their effect on the 

common steering problem. Camber is defined as 

inward or outward tilt of the wheel at the top 

when viewed from the front of the vehicle[4]. 

Camber is measured usually in degrees and a 

wheel with zero degrees camber is vertical. 

When a wheel tilts outward at the top it has 

positive camber and when a wheel is tilted 

inward at the top it has negative camber. 

Suspension systems can be classified into three 

main categories: Passive, semi-active and active 

[5]. Passive suspensions include mainly the 

springs and shock absorbers. Semi-active 

depends on the changing of the shock absorber 

geometry so it could change its damping 

efficiency according to driving conditions. Semi-

active damper could be seen as orifice-based 

damper or MR fluid-based damper. Active 

suspension includes additional damping parts 



Muhammed F. Alhelou and Khaldoun M. Salloum (2021). CNF-ADRC for MacPherson strut quarter-car 
suspension model. Interdisciplinary Journal of Applied and Basic Subjects, 1(2), 157-181. 
 

 

 
159 

 

Fig 2. MacPherson strut active suspension model [11] 

Table 1. MacPherson strut suspension parameters values 

Parameter Meaning Unit 

𝑚_𝑠 = 439.4 Sprung mass (chassis) 𝐾𝑔 

𝑚_𝑡 = 42.3 Unsprung mass (tyre) 𝐾𝑔 

𝐾_𝑠 = 38404.0 Suspension stiffness 𝑁/𝑚 

𝐵_𝑠 = 3593.4 Suspension damping 𝑁. 𝑠/𝑚 

𝐾_𝑡 = 310000.0 Tyre vertical stiffness 𝑁/𝑚 

𝐾_𝑡𝑙 = 190000.0 Tyre lateral stiffness 𝑁/𝑚 

𝐵_𝑡 = 3100 Tyre damping 𝑁. 𝑠/𝑚 

𝑅 = 0.3 Tyre effective radius 𝑚 

𝐼_𝐶 = 1.0 Wheel inertia moment on X-axis 𝐾𝑔.𝑚^2 

(new damping geometry). It could be seen as 

slow active, active or full active. Many works 

[6][7] focused on the mathematical modeling of 

MacPherson strut suspension system, while 

other works [8][9][10] were intended to study 

the effect of control action to active or semi-

active MacPherson suspension system. 

However, the contribution of this article 

summarizes three main points: 

 Developing a new simple mathematical 

model describing the slow-active 

Macpherson suspension system to 

overcome the complexities of the nonlinear 

mathematical models found in literature. 

 Introducing a new active disturbance 

rejection control (ADRC) approach that 

uses a composite non-linear feedback 

controller as its control part: (CNF-ADRC). 

 Depending on the new mathematical 

model, a comparison is carried out between 

CNF-ADRC, Sky-hook, ADRC and a linear 

quadratic regulator (LQR) control system. 

The effect of control signal saturation is 

analyzed by applying the two controllers in the 

case of semi-active suspension. 



Interdisciplinary Journal of Applied and Basic Subjects (2021), 1 (2), 157-181 

  

RESEARCH PAPER 
 

 
16057 

2. MACPHERSON STRUT ACTIVE SUSPENSION MODEL 

                                         [11]. Fig.2 (a) shows a presentation of the proposed model. 

Typical MacPherson suspension system consists of the following parts: 1) Chassis, 2) Control arm, 3) 

Strut, 4) Wheel assembly. 

  is the control arm angle,   is the strut slope, sZ  is the sprung mass displacement, uZ  is the 

unsprung mass displacement, and rZ  is the disturbance of the road. Table 1. shows the meaning and the 

values of the other parameters [11]. 

Fig 2. (b) presents the corresponding kinematic model as a four-bar mechanism, with suspension key 

points indicated by letters M, Q, P, C, T, and N. QYZ is the global reference frame in which QY is the 

horizontal axis and QZ is the vertical one. ,s uZ Z  and   are the states of this mechanism. 

3. MODEL VALIDATION 

                                                             [11]: 

1. Chassis moves in vertical direction only. 

2. All suspension system elements are rigid except the tyre. 

3. Masses of the control arm and the suspension spring are negligible. 

4. The wheel assembly is subjected to rotations and translations motions. 

5. All joints are considered ideal. 

6. Dampers and springs have linear behavior. 

7. Strut slope does not change. 

 

4. KINEMATIC MODEL 

The suspension kinematics is analyzed using the displacement matrix method. The displacement matrix 

of the wheel can be formulated for a rotation about X-axis and translations on Y-axis and Z-axis. Suppose 

that the rotation is in order (Y-axis, Z-axis, X-axis), then we get: 

 

And the displacement matrix will be: 

 1 
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Where  is the camber angle, CY  and CZ  are instantaneous coordinates of the wheel center C , and 

0CY , 0CZ  correspond to their initial equilibrium values. The initial equilibrium state corresponds to a 

zero-camber angle where the vehicle model is defined by a set of constant positions of  

, , , , , .M Q P C T N  Points , ,N T P  are supposed to be fixed to the wheel assembly, and the 

coordinates of them are ( , ), ( , ), ( , )N N T T P PY Z Y Z Y Z  respectively. Their initial coordinates are 

0 0( , )N NY Z . 0 0 0 0, ( , ), ( , )T T P PY Z Y Z . To express the movement of the point , ,N T P with respect to the 

origin $Q$, the wheel matrix displacement could be used as follows: 

 

By solving Eq.3, we get the following equations: 

 

Camber angle should be small in order to keep good contact with the road, so we could consider the 

following approximation: ( ( ) 1, ( )cos sin    ), thus we get: 



 2 

 

 3 

 

 4 

 



Muhammed F. Alhelou and Khaldoun M. Salloum (2021). CNF-ADRC for MacPherson strut quarter-car 
suspension model. Interdisciplinary Journal of Applied and Basic Subjects, 1(2), 157-181. 
 

 

 
162 

 

Eq.5 describes the kinematic behavior of the wheel assembly (points      ), but they do not account for 

points    . However, System motion is illustrated in Fig.3 for the case of negative   .    is the length of 

the control arm,    is the distance between Q and M, which are constants,    is the length of the spring-

damper assembly with initial value    ,    is the initial control arm angle,    is the initial angle between 

control arm and MQ and   is the variation of control arm angle. This motion corresponds to a tyre 

deflection with lateral     and vertical     components. Two more equations are obtained from the 

system geometry: 

 

 
1 0

1 0

cos

sin

P

P s

Y L

Z L Z

 

 

 

  
 

           q                      z      θ                        : 

 

 

And the last equation comes from the strict condition: 

 5a 

 5b 

 5c 

 5d 

 5e 

 5f 

 

 6 

 

 

Fig 3. MacPherson strut suspension motion state, ---initial configuration, ___instantaneous 

values 
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      =
     
     

=
     
     

 

Noting that the position of point   is fixed relative to the point  , and using Eq.5 and Eq.6 the last 

equation can be written in the form: 

            

            
=

        

        
 

From this equation and by defining the following quantities: 

   

   
1 2 0 0

3 4 0 0

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )

M M

M M

X L a c m b d X a c Y m b d L Z

X L b d m a c X b d Y m a c L Z

         

           
 

We get:  

3 4
1 2 3 4

1 2

0
X X

X X X X
X X


   




      


 

U                                                         θ (≥3)               x                       

angle will be: 

 

where: 

 1 2 3 1 41 4 3 24
1 2 32 3

2 2 2

, ,
X X X X XX X X XX

Y Y Y
X X X


   

 

Dynamical analysis requires three main solutions that are: , , .CY   To find these solutions, the following 

three equations are solved together: 

 

Eq.(8a) comes from Eq.(5c) and Eq.(8b) comes from Eq.(5f) while Eq.(8c) is Eq.7.However, by 

substituting Eq.(8c) in Eq.(8b) we get: 

 7 

 

 8a 

 8b 

 
8c 
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Using Eq.9 the expressions of CY and   can be written in the form: 

 

By differentiating Eq.9 with respect to time, the following equation could be achieved: 

2 3( 2 ) s um eY eY Z Z     
 

It could be numerically (see Tab.1) easily verified that       2     for small angles, so the last 

equation could be approximated by: 

 

Eq.11                                         x           θ. A          ,     velocities of the three main 

quantities can be expressed as: 

 

The tyre lateral deflection tlY  is computed from C  position difference: 

 

The partially derivations of the last expression with respect to the generalized variables are: 

 9 

 

 10 

 

 11 

 

 
12 

 

 13 
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In the last equation the following approximations are used: 

1

2 3

1

1

2s

u

W
Z m eY eY

W
Z








   

  





 

 

5. DYNAMIC MODEL 

Non-formal education cannot able to fulfil the need of proper education and academic development of 

child but this education grip 

 

Where   is the deflection of the spring-damper and tZ  is the road disturbance error and they can be 

expressed as: 

 

Using cosine law, expression of   could be written as: 

 14 

 

 15 

 

 16 
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Using Taylor first order approximation, the expression of   can be simplified to: 

 

Now, using Lagrange method, the motion dynamic equations could be determined as follows: 

Lagrange function: T V L , Thus: 

 

Lagrange equation for the first coordinate: 

 

Where df  is the external disturbance and: 

 

Where: 

 17 

 

 18 

 

 19 

 

 20 

 

 21 

 

22 
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2 2 2 2

1 2 3 2 2 3

2 2 2

1 1
3 42 2

03 03

,

,
4 4

s u C u C

s s

m m W I W m W I W

K k W B k W

L L

 

 

    

 

 

As a result, the first dynamic equation will be: 

 

A        L       ’   q                               z              uZ : 

a

u u u

d D
f

dt Z Z Z

  
   

  

L L

 

Where af  is the control input and: 

 

Where  
2 2

5 2 3u u Cm m W I W    . As a result, the second dynamic equation will be: 

 

Regarding Eq.23, Eq.25 and Eq.12, the full system dynamics can be rewritten in the form: 

 23 

 

 24 

 

 25 
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Where: 

 

2
6 1 7 1 1 8 1 2, ( ), ( )tl tl tl

RZR f Rm
K S K S N K S N

e e e
  


    

 

 

Thus, 1L , 2L , 03L  and initial angles can be calculated as follows: 

 

However, the conventional model that depicts the vertical motions of the sprung and the unsprung 

masses could be expressed in the following dynamics [12]: 

 

 26a 

 26b 

 

26c 

 

Table 2. Suspension key points at initial state 

𝑌𝐶 = 0.4279 𝑍𝐶 = 0.0388 𝑌𝑄 = 0.0 

𝑍𝑄 = 0.0 𝑌𝑁 = 0.2341 𝑍𝑁 = 0.1803 

𝑌𝑃 = 0.2490 𝑍𝑃 =  0.0608 𝑌𝑇 = 0.2179 

𝑍𝑇 = 0.3782 𝑌𝑀 = 0.2049 𝑍𝑀 = 0.5249 

 

 

27 

 

 28 
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Fig.4 shows the conventional model vs the proposed one responses when the road disturbance is a 

double bump and the car is supposed to move at velocity of 45 /K h . The double bump is described by 

Eq.29 where w  is the sudden bump, h  is the bump height, 0t  is the initial moment the bump begins, tx  

is a time delay, V  is the car speed,  is an arbitrary constant and   is the disturbance wavelength. 

Fig.4(a) shows the bump signal that corresponds to 045 / , 0.1 , 4 , 1 , 1tV Km h h m t s m x s     . 

 

 

 29 

 

 
(a) Double bump disturbance 

 

(b) Displacement response  

 
(c) Acceleration of sprung mass 

 
(d) Camber angle 

 
(e) Control arm angle 

 
(f) Wheel position displacement 

Fig 1. New model vs conventional mode responses to double bump disturbance 
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6. SECOND ORDER LINEAR ADRC (LADRC) 

A                13   14   15  [16] intended to study ADRC and show its possibilities and advantages over 

PID or LQR controllers. A linear ADRC consists of three main blocks: the controller, the linear estimator 

(Linear Extended State Observer (LESO)), the linear tracking differentiator (LTD) and a disturbance 

rejection scheme. Fig.5 shows a typical linear ADRC scheme. LTD is used to smooth out the reference 

signal using the signal velocity and a speed factor. 

 

LESO captures the information about the generalized disturbances and the internal dynamics of the 

system, while the control part is formulated depending on the observer outputs and the disturbance 

rejection scheme. In this paper, the reduced order LESO that proposed in [17] is used, while the controller 

will be a composite nonlinear feedback (CNF) one that is described in [18]. 

7. REDUCED ORDER LESO 

For the reduced order LESO, the plant output is passed directly to the control scheme and the estimation 

is carried out for the output velocity and the external disturbances: 

 

Where 1 2 3, ,    are the observer gains and 0b̂  is an empirical constant. 

 

 

Fig 5. Linear ADRC scheme 

 30 
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8. CNF DESIGN FOR SECOND ORDER ADRC 

We know that the ADRC method depends on estimating and isolating the nonlinear parts and external 

disturbances that are applied to the system under study and converting it into a system equivalent to a   

order integrator. That is, the new system can be viewed as a linear system without external disturbance. 

This way, the control part in the ADRC can be replaced with a CNF one taking into consideration that the 

studied system is a second or higher order integrator and without disturbance; i.e, there no need for the 

auxiliary system. 

However, in this section we will focus on the second order ADRC; i.e, designing a CNF controller for a 

second order integrator equivalent system with a set point target reference.                            

    [18], we get: 

Writing the linear system in vector-matrix form 

 

Step 2: Designing a state feedback gain matrix 

A state feedback gain matrix ( K ) is designed to have as fast as possible transient process. If the system 

under study is a limited bandwidth (slow active) suspension system, hydraulic systems actively damp 

vertical chassis vibrations up to approx 5 Hz 19. However, K  is designed to have a transient process 

settle time of about 50 ms . And the gain matrix G  can be calculated in the form: 

 

Step 3: Lyaponov solution and scalar function 

A positive definite symmetric matrix W  can be chosen as: 

1 0

0 1
W 

 
  

   where const  . This way, 

Lyaponov solution P  matrix can be calculated by solving the equation: 

 

 31 

 

 32 

 

 33 
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A scaled nonlinear function 
0 | |

( )
e

e e
  

   is used due its better performance robustness to 

variation of tracking targets. Here e  is the tracking error, 0 1   is chosen due to zero initial conditions 

in our case,   and   can be chosen empirically to have the fastest and without overshoot transient 

response. 

 

Step 4: Gathering controller parts 

The whole controller parts are gathered together in the form: 

 

Fig.6a shows the transient response for the double integrator system when is closed with a classical PD 

controller and a CNF controller to have similar performances in the presence of actuator saturation of

[ 10,10]V . Fig.6b shows the control signal in the two cases. It can be seen from the figure the 

smoothness of CNF control signal compared to the classical control one. 

9. LQR DESIGN 

                ’   q        Eq.26,                           x         : 

 
(a) Transient process of closed loop double 

integrator system 

 
(b) Control signal of closed loop double integrator 

system 

Fig 6. CNF for double integrator system 

 34 
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As a result, if the following state variables are considered: 1 2 3 4, , ,s s u uZ x Z x Z x Z x    , the 

MacPherson strut dynamic equations can be expressed in state space as: 

 

where 1 sf Z  and 2 uf Z . 

These dynamic equations can be rewritten in the vector-matrix form: 

 

where the system matrix 1A , control input matrix 1B  and disturbance matrices 2 3,B B  are represented 

as: 

 

 
35 

 

 36 

 

 37 

 

 38 

 



Muhammed F. Alhelou and Khaldoun M. Salloum (2021). CNF-ADRC for MacPherson strut quarter-car 
suspension model. Interdisciplinary Journal of Applied and Basic Subjects, 1(2), 157-181. 
 

 

 
174 

Using Eq.35, we get: 

 

With respect to the control signal we have: 

 

With respect to the road disturbance: 

 

The linear control law designed with LQR is given by: 

 

where LQRK
 is designed so that the damping-ratio of the resulting closed-loop system is more than 0.7 

slightly. 

10. SKY-HOOK DESIGN 

In this control approach, the desired damping force is calculated to separate the function of sprung mass 

motion and the relative motion between sprung and unsprung masses, i.e: 

 39 

 

 40 

 

 41 

 

 42 
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It is important to note that a high pass filter is usually coupled with Sky-hook damper so the Sky-hook 

damper will not respond to constant velocities. In this work we considered a simple high pass filter with 

a cutoff frequency of about 0.5Hz thus it has the form: 

 

3000 /SkyD Ns m  is the Sky-hook gain. The Sky-hook control gain selection is made to have the best 

performance when the active actuator is limited to [ 4000,4000]N  for all control strategies. 

11. SIMULATION RESULTS 

Fig.7 shows different displacement outputs of MacPherson strut active suspension system when 

applying different control strategies and Fig.8 shows the sprung mass acceleration corresponding to 

these controllers. 

It can be seen from the Fig (7,8) that the CNF-ADRC controller has the best performance. 

However, to obtain a clearer comparison, we calculated the root mean square (RMS) of the deflection 

and the acceleration for each controller separately. These calculations correspond to different values of 

the double bump amplitude and vehicle speed. Tab.3 shows these calculations when the vehicle speed is   

and the disturbance length   and Tab.4 shows these calculations when the vehicle speed is   and the 

disturbance length. 

 

 43 

 

 44 

 

 

Fig 7. Displacement response  to double bump disturbance, V = 45Km/h 



Muhammed F. Alhelou and Khaldoun M. Salloum (2021). CNF-ADRC for MacPherson strut quarter-car 
suspension model. Interdisciplinary Journal of Applied and Basic Subjects, 1(2), 157-181. 
 

 

 
176 

 

 

 

 

Fig 8. Sprung mass acceleration response  to double bump disturbance, V = 45Km/h 

Table 3. Displacement and Acceleration when  

 

 

LQR Sky - hook ADRC CNF - ADRC 

Dis Acc Dis Acc Dis Acc Dis Acc 

h = 0.1 0.0118 1.6547 0.0125 1.6411 0.0144 1.6277 0.0119 1.4068 

h = 0.07 0.0072 1.0066 0.0083 1.0812 0.0098 1.0987 0.0074 0.8054 

h = 0.05 0.0044 0.6053 0.0057 0.7194 0.0070 0.7848 0.0045 0.4436 

h = 0.02 0.0015 0.2043 0.0022 0.2786 0.0028 0.3139 0.0013 0.1088 

 

Table 4. Displacement and Acceleration when  

 

 

LQR Sky - hook ADRC CNF - ADRC 

Dis Acc Dis Acc Dis Acc Dis Acc 

h = 0:1 0.0084 1.6533 0.0090 1.6201 0.0100 1.7292 0.0079 1.3841 

h = 0:07 0.0052 1.0666 0.0060 1.0661 0.0068 1.1821 0.0049 0.7958 

h = 0:05 0.0033 0.6979 0.0041 0.7330 0.0048 0.8440 0.0030 0.4558 

h = 0:02 0.0012 0.2579 0.0016 0.2896 0.0019 0.3376 0.0007 0.0994 
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From these tables, the controllers can be arranged from best to worst for performance as follows: 1) 

CNF-ADRC, 2) LQR, 3) Sky-hock, 4) ADRC 

12. EFFECT OF SATURATION (SEMI-ACTIVE SUSPENSION) 

As we mentioned in the introduction, semi-active damper could be orifice based or magnetorheological 

fluid based. In orifice-based approach, suspension system makes use of an electrically controlled 

damping disc inside the shock absorber along with the springs to adjust the damping efficiency. When 

the motor shaft rotates, the number of opened orifice changes and the damping efficiency goes up or 

down. In general, the damping force of a semi-active damper is adjusted by changing the size of an 

orifice. The control input (damping force) is a function of the relative velocity   and current input. 

           [20], damping force characteristics of a typical continuously variable damper (CVD) could be 

drawn as in Fig.9(a). 

 

Damping force is determined by the input current and the input velocity to the CVD. Boundary force 

corresponding to the control currents of 0A and 1.8Acan be fitted piece-wise into nine straight lines, 

such as: 

 

The boundary area and the nine lines of the adopted CVD are shown in Fig.9b. Parameters for each of 

these nine lines are listed in Tab.5. These boundaries were programmed in MATLAB and used to build a 

separate block which is then added to the front line of the control signal to express the limits imposed by 

the semi-active. 

 
(a) Velocity-force map of semi-active CVD 

 
(b) Boundary model of semi-active CVD 

Fig 9. Typical semi-active damper characteristics 

 45 
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Damper. Fig.10 shows the displacement output for vehicle speed of 45 /Km h  and bump height of  

0.1m . One can see that all controllers keep the same performance as for the active damper. However, 

Fig.11 shows the control force that needed to keep the same performance for every controller. It can be 

seen that new frequency components have been added to the control forces thus the controllers can be 

ranked from best to worst for smoothness as follows: 1) LQR, 2) ADRC, 3) CNF-ADRC, 4) Sky-hock. 

Table 5. Parameters of boundary damper model of CVD 

 
        

                                    

 
25154 0 4447 1077 1473 1850 3181 0 587 337 

 
       

 

                             
  

 
381 0 6592 0 1409 -674 351 -1489 

  

 
(a) Control-force of semi-active CVD 

 
(b) Control-force of active CVD 

Fig 10. Damping force of semi-active and active CVD response to double bump disturbance, 

V = 45Km/h 
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13. CONCLUSION 

Due to their favorable cost, simulation time, and 

low processing capacity requirements, 

mathematical models are widely used. This 

paper has presented a new and simple model of 

MacPherson suspension system that describes 

the vertical motion with the presence of camber 

and control arm angles. In addition, a new 

ADRC approach is proposed to enhance the 

transient process quality of the conventional 

ADRC. This method is based on replacing the 

control part of conventional ADRC with a 

composite nonlinear feedback one. To this end, 

a MATLAB simulation is performed to simulate 

the proposed mathematical model. The 

efficiency of four different control approaches 

to the mathematical model are tested: ADRC, 

CNF-ADRC, Sky-hook, and LQR. The simulation 

results demonstrated the following: 

• CNF-ADRC has the best handling 

(displacement) and comfort (sprung 

mass acceleration) performances for 

active and semi-active suspensions. 

• In the case of the semi-active system, 

new frequency components arose in 

the control signals where Skyhook was 

the worst and the LQR was the best in 

terms of the quality of the control 

signal. 

It could be concluded that the control law of 

CNF-ADRC may be applicable to a semi-active 

suspension system without resulting in much 

degradation of control performance. 
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Fig 11. Displacement   of CVD response to double bump disturbance, V = 45Km/h 
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